Quadratic reciprocity: Difference between revisions
(Created page with '==Statement== If <math>p,q</math> are distinct odd prime numbers, then: <math>\left(\frac{p}{q}\right) \left(\frac{q}{p}\right) = (-1)^{\frac{(p-1)(q-1)}{4}}</math> where …') |
(No difference)
|
Latest revision as of 22:14, 29 May 2010
Statement
If are distinct odd prime numbers, then:
where and are the respective Legendre symbols: a Legendre symbol takes the value if the top value is a quadratic residue modulo the bottom value, and if the top value is a quadratic nonresidue modulo the bottom value.
The statement can also be captured using the following cases for the residue classes of and modulo :
| Congruence class of mod | Congruence class of mod | Both quadratic residues mod each other? | Both quadratic nonresidues mod each other? | quadratic nonresidue mod , quadratic residue mod ? | quadratic residue mod , quadratic nonresidue mod ? |
|---|---|---|---|---|---|
| 1 | 1 | Possible (example: 5, 29) | Possible (example: 5, 13) | Impossible | Impossible |
| 1 | -1 | Possible (example: 5, 19) | Possible (example: 5, 7) | Impossible | Impossible |
| -1 | 1 | Possible (example: 19, 5) | Possible (example: 7, 5) | Impossible | Impossible |
| -1 | -1 | Impossible | Impossible | Possible (example: 3,7) | Possible (example: 7, 3) |