Dirichlet's theorem on primes in arithmetic progressions: Difference between revisions

From Number
(Created page with '{{infinitude fact}} ==Statement== Let <math>a,D</math> be relatively prime natural numbers. Then, there exist infinitely many primes <math>p</math> such that: <math>p \equiv a...')
(No difference)

Revision as of 02:31, 7 April 2009

Template:Infinitude fact

Statement

Let be relatively prime natural numbers. Then, there exist infinitely many primes such that:

.

For fixed , the primes that are congruent to modulo are termed Dirichlet primes.

Related facts

Easy case

Conjectures/facts about the first Dirichlet prime

Conjectures/facts about Bertrand's postulate on Dirichlet primes

Conjectures/facts about contiguous blocks of Dirichlet primes

  • Green-Tao theorem: This states that for any , there exists a prime arithmetic progression of length : an arithmetic progression of length , all of whose members are primes.