Carmichael number: Difference between revisions

From Number
No edit summary
No edit summary
Line 8: Line 8:
* For any natural number <math>a</math> relatively prime to <math>n</math>, <math>n</math> divides <math>a^{n-1} - 1</math>.
* For any natural number <math>a</math> relatively prime to <math>n</math>, <math>n</math> divides <math>a^{n-1} - 1</math>.
* <math>n</math> is a [[defining ingredient::Fermat pseudoprime]] to any base relatively prime to it.
* <math>n</math> is a [[defining ingredient::Fermat pseudoprime]] to any base relatively prime to it.
==Occurrence==
===Initial examples===
<section begin="list"/>[[561]], [[1105]], [[1729]], [[2465]], <toggledisplay>2821, 6601, 8911, 10585, 15841, 29341, 41041, 46657, 52633, 62745, 63973, 75361, 101101, 115921, 126217, 162401, 172081, 188461, 252601, 278545, 294409, 314821, 334153, 340561, 399001, 410041, 449065, 488881, 512461</toggledisplay>[[Oeis:A002997|View list on OEIS]]<section end="list"/>


==Facts==
==Facts==


* [[There are infinitely many Carmichael numbers]]
* [[There are infinitely many Carmichael numbers]]

Revision as of 21:15, 2 January 2012

Template:Pseudoprimality property

Definition

A composite number is termed an Carmichael number or absolute pseudoprime if it satisfies the following condition:

  • The universal exponent (also called the Carmichael function) of divides .
  • For any natural number relatively prime to , divides .
  • is a Fermat pseudoprime to any base relatively prime to it.

Occurrence

Initial examples

561, 1105, 1729, 2465, [SHOW MORE]

View list on OEIS

Facts