Poulet number: Difference between revisions
(Created page with '{{pseudoprimality property}} ==Definition== A '''Poulet number''' is an odd composite number <math>n</math> such that: <math>2^{n-1} \equiv 1 \mod n</math>. In other words, <...') |
No edit summary |
||
Line 3: | Line 3: | ||
==Definition== | ==Definition== | ||
A '''Poulet number''' is an odd composite number <math>n</math> such that: | A '''Poulet number''' or '''Sarrus number''' is an odd composite number <math>n</math> such that: | ||
<math>2^{n-1} \equiv 1 \mod n</math>. | <math>2^{n-1} \equiv 1 \mod n</math>. |
Revision as of 00:11, 22 April 2009
Template:Pseudoprimality property
Definition
A Poulet number or Sarrus number is an odd composite number such that:
.
In other words, divides . Equivalently, is a Fermat pseudoprime modulo .
Relation with other properties
Stronger properties
- Absolute pseudoprime (at least, in the odd number case).