Poulet number: Difference between revisions

From Number
(Created page with '{{pseudoprimality property}} ==Definition== A '''Poulet number''' is an odd composite number <math>n</math> such that: <math>2^{n-1} \equiv 1 \mod n</math>. In other words, <...')
 
No edit summary
Line 3: Line 3:
==Definition==
==Definition==


A '''Poulet number''' is an odd composite number <math>n</math> such that:
A '''Poulet number''' or '''Sarrus number''' is an odd composite number <math>n</math> such that:


<math>2^{n-1} \equiv 1 \mod n</math>.
<math>2^{n-1} \equiv 1 \mod n</math>.

Revision as of 00:11, 22 April 2009

Template:Pseudoprimality property

Definition

A Poulet number or Sarrus number is an odd composite number such that:

.

In other words, divides . Equivalently, is a Fermat pseudoprime modulo .

Relation with other properties

Stronger properties