Carmichael number: Difference between revisions
(Created page with '{{pseudoprimality property}} ==Definition== A composite number <math>n > 1</math> is termed an '''absolute pseudoprime''' or ''Carmichael number''' if it satisfies the followin...') |
No edit summary |
||
Line 5: | Line 5: | ||
A composite number <math>n > 1</math> is termed an '''absolute pseudoprime''' or ''Carmichael number''' if it satisfies the following condition: | A composite number <math>n > 1</math> is termed an '''absolute pseudoprime''' or ''Carmichael number''' if it satisfies the following condition: | ||
* The [[Liouville-lambda function]] of <math>n</math> divides <math>n - 1</math>. | * The [[defining ingredient::Liouville-lambda function]] of <math>n</math> divides <math>n - 1</math>. | ||
* For any natural number <math>a</math> relatively prime to <math>n</math>, <math>n</math> divides <math>a^{n-1} - 1</math>. | * For any natural number <math>a</math> relatively prime to <math>n</math>, <math>n</math> divides <math>a^{n-1} - 1</math>. | ||
* <math>n</math> is a [[Fermat pseudoprime]] to any base relatively prime to it. | * <math>n</math> is a [[defining ingredient::Fermat pseudoprime]] to any base relatively prime to it. |
Revision as of 22:58, 21 March 2009
Template:Pseudoprimality property
Definition
A composite number is termed an absolute pseudoprime' or Carmichael number if it satisfies the following condition:
- The Liouville-lambda function of divides .
- For any natural number relatively prime to , divides .
- is a Fermat pseudoprime to any base relatively prime to it.