561: Difference between revisions
No edit summary |
|||
| Line 16: | Line 16: | ||
| [[satisfies property::Carmichael number]] (also called absolute pseudoprime) || first Carmichael number || [[561]], [[1105]], [[1729]] | | [[satisfies property::Carmichael number]] (also called absolute pseudoprime) || first Carmichael number || [[561]], [[1105]], [[1729]] | ||
|- | |- | ||
| [[satisfies property::Poulet number]] ([[Fermat pseudoprime to base 2) || second Poulet number || [[341]], [[561]], [[645]] | | [[satisfies property::Poulet number]] ([[Fermat pseudoprime]] to base 2) || second Poulet number || [[341]], [[561]], [[645]] | ||
|} | |||
==Arithmetic functions== | |||
{| class="sortable" border="1" | |||
! Function !! Value !! Explanation | |||
|- | |||
| {{arithmetic function value|Euler totient function|320}} || The Euler totient function is <math>(3 - 1)(11 - 1)(17 - 1) = (2)(10)(16) = 320</math>. | |||
|- | |||
| {{arithmetic function value|universal exponent|80}} || The universal exponent is the [[least common multiple]] of <math>\{3 - 1, 11 - 1, 17 - 1\}</math>, which is <math>\operatorname{lcm} \{ 2,10, 16\}</math> and equals 80.<br>Note that 561 is a [[Carmichael number]] precisely because the universal exponent divides 561 - 1 = 560. | |||
|- | |||
| {{arithmetic function value|Mobius function|-1}} || The number is a [[square-free number]] and it has an odd number of prime divisors (3 prime divisors). | |||
|- | |||
| {{arithmetic function value|divisor count function|8}} || <math>(1 + 1)(1 + 1)(1 + 1)</math> where the first 1s in each sum denote the multiplicities of the prime divisors. | |||
|- | |||
| {{arithmetic function value|largest prime divisor|17}} || | |||
|- | |||
| {{arithmetic function value|largest prime power divisor|17}} || | |||
|} | |} | ||
Revision as of 21:10, 2 January 2012
This article is about a particular natural number.|View all articles on particular natural numbers
Summary
Factorization
The factorization into primes is:
Properties and families
| Property or family | Parameter values | First few numbers satisfying the property |
|---|---|---|
| Carmichael number (also called absolute pseudoprime) | first Carmichael number | 561, 1105, 1729 |
| Poulet number (Fermat pseudoprime to base 2) | second Poulet number | 341, 561, 645 |
Arithmetic functions
| Function | Value | Explanation |
|---|---|---|
| Euler totient function | 320 | The Euler totient function is . |
| universal exponent | 80 | The universal exponent is the least common multiple of , which is and equals 80. Note that 561 is a Carmichael number precisely because the universal exponent divides 561 - 1 = 560. |
| Mobius function | -1 | The number is a square-free number and it has an odd number of prime divisors (3 prime divisors). |
| divisor count function | 8 | where the first 1s in each sum denote the multiplicities of the prime divisors. |
| largest prime divisor | 17 | |
| largest prime power divisor | 17 |