561: Difference between revisions

From Number
No edit summary
Line 16: Line 16:
| [[satisfies property::Carmichael number]] (also called absolute pseudoprime) || first Carmichael number || [[561]], [[1105]], [[1729]]
| [[satisfies property::Carmichael number]] (also called absolute pseudoprime) || first Carmichael number || [[561]], [[1105]], [[1729]]
|-
|-
| [[satisfies property::Poulet number]] ([[Fermat pseudoprime to base 2) || second Poulet number || [[341]], [[561]], [[645]]
| [[satisfies property::Poulet number]] ([[Fermat pseudoprime]] to base 2) || second Poulet number || [[341]], [[561]], [[645]]
|}
 
==Arithmetic functions==
 
{| class="sortable" border="1"
! Function !! Value !! Explanation
|-
| {{arithmetic function value|Euler totient function|320}} || The Euler totient function is <math>(3 - 1)(11 - 1)(17 - 1) = (2)(10)(16) = 320</math>.
|-
| {{arithmetic function value|universal exponent|80}} || The universal exponent is the [[least common multiple]] of <math>\{3 - 1, 11 - 1, 17 - 1\}</math>, which is <math>\operatorname{lcm} \{ 2,10, 16\}</math> and equals 80.<br>Note that 561 is a [[Carmichael number]] precisely because the universal exponent divides 561 - 1 = 560.
|-
| {{arithmetic function value|Mobius function|-1}} || The number is a [[square-free number]] and it has an odd number of prime divisors (3 prime divisors).
|-
| {{arithmetic function value|divisor count function|8}} || <math>(1 + 1)(1 + 1)(1 + 1)</math> where the first 1s in each sum denote the multiplicities of the prime divisors.
|-
| {{arithmetic function value|largest prime divisor|17}} ||
|-
| {{arithmetic function value|largest prime power divisor|17}} ||
|}
|}

Revision as of 21:10, 2 January 2012

This article is about a particular natural number.|View all articles on particular natural numbers

Summary

Factorization

The factorization into primes is:

Properties and families

Property or family Parameter values First few numbers satisfying the property
Carmichael number (also called absolute pseudoprime) first Carmichael number 561, 1105, 1729
Poulet number (Fermat pseudoprime to base 2) second Poulet number 341, 561, 645

Arithmetic functions

Function Value Explanation
Euler totient function 320 The Euler totient function is .
universal exponent 80 The universal exponent is the least common multiple of , which is and equals 80.
Note that 561 is a Carmichael number precisely because the universal exponent divides 561 - 1 = 560.
Mobius function -1 The number is a square-free number and it has an odd number of prime divisors (3 prime divisors).
divisor count function 8 where the first 1s in each sum denote the multiplicities of the prime divisors.
largest prime divisor 17
largest prime power divisor 17