341: Difference between revisions
No edit summary |
|||
Line 14: | Line 14: | ||
|- | |- | ||
| [[satisfies property::Poulet number]] (also called Sarrus number), i.e., [[Fermat pseudoprime]] to base 2 || smallest Poulet number || {{#lst:Poulet number|list}} || <math>2^{10} = 1024 \equiv 1 \pmod {341}</math>, so <math>2^{340} \equiv 1 \pmod {341}</math>. | | [[satisfies property::Poulet number]] (also called Sarrus number), i.e., [[Fermat pseudoprime]] to base 2 || smallest Poulet number || {{#lst:Poulet number|list}} || <math>2^{10} = 1024 \equiv 1 \pmod {341}</math>, so <math>2^{340} \equiv 1 \pmod {341}</math>. | ||
|} | |||
==Arithmetic functions== | |||
{| class="sortable" border="1" | |||
! Function !! Value !! Explanation | |||
|- | |||
| {{arithmetic function value|Euler totient function|300}} || The Euler totient function is <math>(11 - 1)(31 - 1) = (10)(30) = 300</math>. | |||
|- | |||
| {{arithmetic function value|universal exponent|30}} || The universal exponent is <math>\operatorname{lcm}\{10,30 \} = 30</math>. | |||
|- | |||
| {{arithmetic function value|divisor count function|4}} || <math>(1 + 1)(1 + 1)</math> where the first 1s in both factors are the multiplicities of the prime divisors. | |||
|- | |||
| {{arithmetic function value|divisor sum function|384}} || <math>(11^2-1)/(11-1)</math> times <math>(31^2 - 1)/(31 - 1)</math> equals <math>(12)(32) = 384</math>. | |||
|- | |||
| {{arithmetic function value|Mobius function|1}} || The number is square-free and has an even number of prime divisors (2 prime divisors). | |||
|} | |} |
Revision as of 21:42, 3 January 2012
This article is about a particular natural number.|View all articles on particular natural numbers
Summary
Factorization
The factorization is as follows, with factors 11 and 31:
Properties and families
Property or family | Parameter values | First few members of the family | Proof of satisfaction/membership/containment |
---|---|---|---|
Poulet number (also called Sarrus number), i.e., Fermat pseudoprime to base 2 | smallest Poulet number | 341, 561, 645, 1105, 1387, 1729, 1905, 2047, [SHOW MORE] View list on OEIS | , so . |
Arithmetic functions
Function | Value | Explanation |
---|---|---|
Euler totient function | 300 | The Euler totient function is . |
universal exponent | 30 | The universal exponent is . |
divisor count function | 4 | where the first 1s in both factors are the multiplicities of the prime divisors. |
divisor sum function | 384 | times equals . |
Mobius function | 1 | The number is square-free and has an even number of prime divisors (2 prime divisors). |