341: Difference between revisions

From Number
No edit summary
Line 14: Line 14:
|-
|-
| [[satisfies property::Poulet number]] (also called Sarrus number), i.e., [[Fermat pseudoprime]] to base 2 || smallest Poulet number || {{#lst:Poulet number|list}} || <math>2^{10} = 1024 \equiv 1 \pmod {341}</math>, so <math>2^{340} \equiv 1 \pmod {341}</math>.
| [[satisfies property::Poulet number]] (also called Sarrus number), i.e., [[Fermat pseudoprime]] to base 2 || smallest Poulet number || {{#lst:Poulet number|list}} || <math>2^{10} = 1024 \equiv 1 \pmod {341}</math>, so <math>2^{340} \equiv 1 \pmod {341}</math>.
|}
==Arithmetic functions==
{| class="sortable" border="1"
! Function !! Value !! Explanation
|-
| {{arithmetic function value|Euler totient function|300}} || The Euler totient function is <math>(11 - 1)(31 - 1) = (10)(30) = 300</math>.
|-
| {{arithmetic function value|universal exponent|30}} || The universal exponent is <math>\operatorname{lcm}\{10,30 \} = 30</math>.
|-
| {{arithmetic function value|divisor count function|4}} || <math>(1 + 1)(1 + 1)</math> where the first 1s in both factors are the multiplicities of the prime divisors.
|-
| {{arithmetic function value|divisor sum function|384}} || <math>(11^2-1)/(11-1)</math> times <math>(31^2 - 1)/(31 - 1)</math> equals <math>(12)(32) = 384</math>.
|-
| {{arithmetic function value|Mobius function|1}} || The number is square-free and has an even number of prime divisors (2 prime divisors).
|}
|}

Revision as of 21:42, 3 January 2012

This article is about a particular natural number.|View all articles on particular natural numbers

Summary

Factorization

The factorization is as follows, with factors 11 and 31:

Properties and families

Property or family Parameter values First few members of the family Proof of satisfaction/membership/containment
Poulet number (also called Sarrus number), i.e., Fermat pseudoprime to base 2 smallest Poulet number 341, 561, 645, 1105, 1387, 1729, 1905, 2047, [SHOW MORE] View list on OEIS , so .

Arithmetic functions

Function Value Explanation
Euler totient function 300 The Euler totient function is .
universal exponent 30 The universal exponent is .
divisor count function 4 where the first 1s in both factors are the multiplicities of the prime divisors.
divisor sum function 384 times equals .
Mobius function 1 The number is square-free and has an even number of prime divisors (2 prime divisors).