Largest prime divisor

From Number
Revision as of 23:03, 28 April 2009 by Vipul (talk | contribs) (Created page with '{{arithmetic function}} ==Definition== Let <math>n</math> be a natural number greater than <math>1</math>. The ''largest prime divisor''' of <math>n</math> is defined as th...')
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

This article defines an arithmetic function or number-theoretic function: a function from the natural numbers to a ring (usually, the ring of integers, rational numbers, real numbers, or complex numbers).
View a complete list of arithmetic functions

Definition

Let be a natural number greater than . The largest prime divisor' of is defined as the largest among the primes that divide . This is denoted as . By fiat, we set .

Behavior

The ID of the sequence in the Online Encyclopedia of Integer Sequences is A006530

Lower bound

There is no lower bound on the largest prime divisor of as a function of . There are infinitely many powers of two, and hence, for infinitely many numbers.

Relation with other arithmetic functions