Dirichlet's theorem for modulus eight

From Number

Statement

For any odd natural number , there are infinitely many primes such that:

.

Facts used

  1. Congruence condition for two to be a quadratic residue
  2. Congruence condition for minus one to be a quadratic residue
  3. Nonconstant polynomial with integer coefficients and nonzero constant term takes infinitely many pairwise relatively prime values

Proof

We need to consider four congruence classes modulo : . We do these case by case.

Congruence class of modulo

By fact (2), is a quadratic residue modulo if and only if . In particular, a prime can divide for some natural number if and only if .

Consider now the polynomial . For any natural number , all prime divisors of are congruent to . However, itself is modulo , so must have at least one prime divisor that is modulo . By fact (3), there are infinitely many pairwise relatively prime values of , yielding infinitely many distinct primes that are modulo .

Congruence class of modulo

By facts (1) and (2), we can deduce that is a quadratic residue modulo if and only if . In particular, a prime can divide for some natural number if and only if .

Consider now the polynomial . For any natural number , all prime divisors of are congruent to . However, itself is modulo , so must have at least one prime divisor that is modulo . By fact (3), there are infinitely many pairwise relatively prime values of , yielding infinitely many distinct primes that are modulo .