Abc conjecture

From Number
Revision as of 17:12, 13 August 2010 by Vipul (talk | contribs) (→‎Statement)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Statement

For every , there exists a constant such that for any three relatively prime integers such that:

,

we have the inequality:

where the indicated product is only over prime divisors of the product .

Related facts

Analogous facts over other rings

  • Mason-Stothers theorem states that the analogous statement holds over polynomial rings over fields with absolute value replaced by degree -- in fact, we do not even need the .

Weaker facts and conjectures