# Schinzel's hypothesis H

## Statement

Suppose  are all irreducible polynomials with integer coefficients and with positive leading coefficient, such that the product  does not have any fixed divisors, i.e., it cannot be expressed as a proper multiple of an integer-valued polynomial. Schinzel's hypothesis H states that there are infinitely many natural numbers  satisfying the condition that  are all simultaneously prime.

## Related facts and conjectures

### Weaker facts and conjectures

Fact or conjecture Status How it fits with Schinzel's hypothesis H
Dickson's conjecture Open We are dealing with linear polynomials.
Bunyakovsky conjecture open We are dealing with only one irreducible polynomial of degree two or higher
Dirichlet's theorem on primes in arithmetic progressions proved We are dealing with one irreducible polynomial of degree one
Twin prime conjecture open We are dealing with the irreducible polynomials  and . Also, the dependence is via Dickson's conjecture.
Green-Tao theorem proved The theorem states that the sequence of primes contains arithmetic progressions of arbitrary length. The Green-Tao theorem can be viewed as a corollary of Schinzel's hypothesis H if we view it as a collection of statements, one about the existence of arithmetic progressions of a specific length. The dependence is via Dickson's conjecture.