Carmichael number: Difference between revisions
No edit summary |
|||
Line 13: | Line 13: | ||
===Initial examples=== | ===Initial examples=== | ||
<section begin="list"/>[[561]], [[1105]], [[1729]], [[2465]], | <section begin="list"/>[[561]], [[1105]], [[1729]], [[2465]], [[2821]], [[6601]], <toggledisplay>8911, 10585, 15841, 29341, 41041, 46657, 52633, 62745, 63973, 75361, 101101, 115921, 126217, 162401, 172081, 188461, 252601, 278545, 294409, 314821, 334153, 340561, 399001, 410041, 449065, 488881, 512461</toggledisplay>[[Oeis:A002997|View list on OEIS]]<section end="list"/> | ||
Note that [[Carmichael number is square-free]] and [[Carmichael number is odd]], so each of these is the product of distinct odd primes. For the first few examples, we indicate the prime factors: | |||
{| class="sortable" border="1" | |||
! Carmichael number !! Prime factors as list !! [[3]]? !! [[5]]?!! [[7]]? !! [[11]]? !! [[13]]? !! [[17]]? !! [[19]]? !! [[23]]? !! [[29]]? [[Universal exponent]] (must divide number minus one) | |||
|- | |||
| [[561]] || [[3]], [[11]], [[17]] || Yes || No || No || Yes || No || Yes || No || No || No || 80 | |||
|- | |||
| [[1105]] || [[5]], [[13]], [[17]] || No || Yes || No || No || Yes || Yes || No || No || No || 48 | |||
|- | |||
| [[1729]] || [[7]], [[13]], [[19]] || No || No || Yes || No || Yes || No || Yes || No || No || 36 | |||
|- | |||
| [[2465]] || [[5]], [[17]], [[29]] || No || Yes || No || No || Yes || No || No || No || Yes || 112 | |||
|} | |||
==Facts== | ==Facts== | ||
* [[There are infinitely many Carmichael numbers]] | * [[There are infinitely many Carmichael numbers]] |
Revision as of 21:13, 3 January 2012
Template:Pseudoprimality property
Definition
A composite number is termed an Carmichael number or absolute pseudoprime if it satisfies the following condition:
- The universal exponent (also called the Carmichael function) of divides .
- For any natural number relatively prime to , divides .
- is a Fermat pseudoprime to any base relatively prime to it.
Occurrence
Initial examples
561, 1105, 1729, 2465, 2821, 6601, [SHOW MORE]
Note that Carmichael number is square-free and Carmichael number is odd, so each of these is the product of distinct odd primes. For the first few examples, we indicate the prime factors:
Carmichael number | Prime factors as list | 3? | 5? | 7? | 11? | 13? | 17? | 19? | 23? | 29? Universal exponent (must divide number minus one) | |
---|---|---|---|---|---|---|---|---|---|---|---|
561 | 3, 11, 17 | Yes | No | No | Yes | No | Yes | No | No | No | 80 |
1105 | 5, 13, 17 | No | Yes | No | No | Yes | Yes | No | No | No | 48 |
1729 | 7, 13, 19 | No | No | Yes | No | Yes | No | Yes | No | No | 36 |
2465 | 5, 17, 29 | No | Yes | No | No | Yes | No | No | No | Yes | 112 |