Lucky number of Euler: Difference between revisions

From Number
No edit summary
Line 14: Line 14:


<section begin="list"/>[[2]], [[3]], [[5]], [[11]], [[17]], [[41]] [[Oeis:A014556|View list of OEIS]]<section end="list"/>
<section begin="list"/>[[2]], [[3]], [[5]], [[11]], [[17]], [[41]] [[Oeis:A014556|View list of OEIS]]<section end="list"/>
==Polynomial values==
The table should eventually go up to <math>n = 40</math>. It is not yet completed.
{| class="sortable" border="1"
! <math>n</math> !! <math>n^2 - n</math> !! Polynomial value <math>n^2 - n + 2</math> !! Polynomial value <math>n^2 - n + 3</math> !! Polynomial value <math>n^2 - n + 5</math> !! Polynomial value <math>n^2 - n + 11</math> !! Polynomial value <math>n^2 - n + 17</math> !! Polynomial value <math>n^2 - n + 41</math>
|-
| 1 || 0 || [[2]] || [[3]] || [[5]] || [[11]] || [[17]] || [[41]]
|-
| 2 || 2 || N/A || [[5]] || [[7]] || [[13]] || [[19]] || [[43]]
|-
| 3 || 6 || N/A || N/A || [[13]] || [[19]] || [[23]] || [[47]]
|-
| 4 || 12 || N/A || N/A || [[17]] || [[23]] || [[29]] || [[53]]
|-
| 5 || 20 || N/A || N/A || N/A || [[31]] || [[37]] || [[61]]
|-
| 6 || 30 || N/A || N/A || N/A || [[41]] || [[47]] || [[71]]
|-
| 7 || 42 || N/A || N/A || N/A || [[53]] || [[59]] || [[83]]
|-
| 8 || 56 || N/A || N/A || N/A || [[67]] || [[73]] || [[97]]
|-
| 9 || 72 || N/A || N/A || N/A || [[83]] || [[89]] || [[113]]
|-
| 10 || 90 || N/A || N/A || N/A || [[101]] || [[107]] || [[131]]
|-
| 11 || 110 || N/A || N/A || N/A || N/A || [[127]] || [[151]]
|-
| 12 || 132 || N/A || N/A || N/A || N/A || [[149]] || [[173]]
|}

Revision as of 22:24, 15 January 2012

Definition

A lucky number of Euler is a prime number such that the polynomial:

takes prime number values for .

This condition is equivalent to the condition that the ring of integers in be a unique factorization domain, or equivalently, the class number of the field be equal to one.

Occurrence

There are only six lucky numbers of Euler:

2, 3, 5, 11, 17, 41 View list of OEIS

Polynomial values

The table should eventually go up to . It is not yet completed.

Polynomial value Polynomial value Polynomial value Polynomial value Polynomial value Polynomial value
1 0 2 3 5 11 17 41
2 2 N/A 5 7 13 19 43
3 6 N/A N/A 13 19 23 47
4 12 N/A N/A 17 23 29 53
5 20 N/A N/A N/A 31 37 61
6 30 N/A N/A N/A 41 47 71
7 42 N/A N/A N/A 53 59 83
8 56 N/A N/A N/A 67 73 97
9 72 N/A N/A N/A 83 89 113
10 90 N/A N/A N/A 101 107 131
11 110 N/A N/A N/A N/A 127 151
12 132 N/A N/A N/A N/A 149 173