Divisor sum function

From Number
Revision as of 22:22, 2 May 2009 by Vipul (talk | contribs)

This article defines an arithmetic function or number-theoretic function: a function from the natural numbers to a ring (usually, the ring of integers, rational numbers, real numbers, or complex numbers).
View a complete list of arithmetic functions

Definition

Let n be a natural number. The divisor sum function of n, denoted σ(n), is defined in the following equivalent ways:

  1. σ is the Dirichlet product of the identity function E on the natural numbers and the all-one function U: the function sending every natural number to 1.
  2. We have σ(n)=d|nd.

Formula in terms of prime factorization

Suppose we have:

n=p1k1p2k2prkr,

where the pi are distinct prime divisors of n. Then:

σ(n)=i=1r(piki+11pi1).

Equivalently, the ratio is given by:

σ(n)n=i=1r(1(1/piki+1)11/pi).

Behavior

Lower bound

For any n>1, σ(n)n+1. Equality is achieved if and only if n is prime. Further, σ(n) is the lowest, in relative terms, for primes. In particular, excluding the case n=1, the fraction σ(n)/n achieves a strict minimum-so-far at every prime, and nowhere else.

Thus, we have:

limnσ(n),

and:

liminfnσ(n)n=1,

Upper bound

Gronwall's theorem asserts that:

limsupnσ(n)nloglogn=eγ

where all the logarithms are natural logarithms and γ is the Euler-Mascheroni constant.

A closely related result is Robin's theorem, which states that the Riemann hypothesis is equivalent to the statement that for n5041, the ratio is always strictly less than eγ.

Summatory function

Fill this in later

Relation with other arithmetic functions

Relations expressed in terms of Dirichlet products

Relation with properties of numbers

Properties

σ is a multiplicative function but not a completely multiplicative function.