All ones function

From Number

This article defines an arithmetic function or number-theoretic function: a function from the natural numbers to a ring (usually, the ring of integers, rational numbers, real numbers, or complex numbers).
View a complete list of arithmetic functions

Definition

Let be a commutative unital ring. The all ones function from the natural numbers to is the function that sends every natural number to the identity element of .

The all ones function is typically denoted by the letter .

Relation with other arithmetic functions

  • The inverse of this function with respect to the Dirichlet product is the Mobius function .
  • The square of this function with respect to the Dirichlet product is the divisor count function.
  • Taking the Dirichlet product of a function with this function is equivalent to summing up over all the positive divisors:

.