Carmichael number: Difference between revisions
(→Facts) |
|||
(2 intermediate revisions by the same user not shown) | |||
Line 3: | Line 3: | ||
==Definition== | ==Definition== | ||
A composite number <math>n > 1</math> is termed an '''Carmichael number''' or '''absolute pseudoprime''' if it satisfies the following | A composite number <math>n > 1</math> is termed an '''Carmichael number''' or '''absolute pseudoprime''' if it satisfies the following equivalent conditions: | ||
# The [[defining ingredient::universal exponent]] (also called the Carmichael function) <math>\lambda(n)</math> of <math>n</math> divides <math>n - 1</math>. | |||
# For any natural number <math>a</math> relatively prime to <math>n</math>, <math>n</math> divides <math>a^{n-1} - 1</math>. | |||
# <math>n</math> is a [[defining ingredient::Fermat pseudoprime]] to any base relatively prime to it. | |||
# <math>n</math> is a square-free odd number greater than 1 and <math>p - 1</math> divides <math>n - 1</math> for every prime divisor <math>p</math> of <math>n</math>. | |||
==Occurrence== | ==Occurrence== | ||
Line 26: | Line 27: | ||
| [[1729]] || [[7]], [[13]], [[19]] || No || No || Yes || No || Yes || No || Yes || No || No || No || 36 | | [[1729]] || [[7]], [[13]], [[19]] || No || No || Yes || No || Yes || No || Yes || No || No || No || 36 | ||
|- | |- | ||
| [[2465]] || [[5]], [[17]], [[29]] || No || Yes || No || No || | | [[2465]] || [[5]], [[17]], [[29]] || No || Yes || No || No || No || Yes || No || No || Yes || No ||112 | ||
|- | |- | ||
| [[2821]] || [[7]], [[13]], [[31]] || No || No || Yes || No || Yes || No || No || No || No || Yes || 60 | | [[2821]] || [[7]], [[13]], [[31]] || No || No || Yes || No || Yes || No || No || No || No || Yes || 60 |
Latest revision as of 22:01, 15 January 2012
Template:Pseudoprimality property
Definition
A composite number is termed an Carmichael number or absolute pseudoprime if it satisfies the following equivalent conditions:
- The universal exponent (also called the Carmichael function) of divides .
- For any natural number relatively prime to , divides .
- is a Fermat pseudoprime to any base relatively prime to it.
- is a square-free odd number greater than 1 and divides for every prime divisor of .
Occurrence
Initial examples
561, 1105, 1729, 2465, 2821, 6601, [SHOW MORE]
Note that Carmichael number is square-free and Carmichael number is odd, so each of these is the product of distinct odd primes. Further, because Carmichael number is not semiprime, there are at least three prime factors of each number. For the first few examples, we indicate the prime factors:
Carmichael number | Prime factors as list | 3? | 5? | 7? | 11? | 13? | 17? | 19? | 23? | 29? | 31? | Universal exponent (must divide number minus one) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
561 | 3, 11, 17 | Yes | No | No | Yes | No | Yes | No | No | No | No | 80 |
1105 | 5, 13, 17 | No | Yes | No | No | Yes | Yes | No | No | No | No | 48 |
1729 | 7, 13, 19 | No | No | Yes | No | Yes | No | Yes | No | No | No | 36 |
2465 | 5, 17, 29 | No | Yes | No | No | No | Yes | No | No | Yes | No | 112 |
2821 | 7, 13, 31 | No | No | Yes | No | Yes | No | No | No | No | Yes | 60 |