Sophie Germain prime
This article defines a property that can be evaluated for a prime number. In other words, every prime number either satisfies this property or does not satisfy this property.
View other properties of prime numbers | View other properties of natural numbers
Contents
Definition
A Sophie Germain prime is a prime number such that
is also prime. The corresponding prime
is termed a safe prime.
Occurrence
Initial values
The first few Sophie Germain primes are:
2, 3, 5, 11, 23, 29, 41, 53, 83, 89, [SHOW MORE]View list on OEISThe first few primes that are not Sophie Germain primes are: 7, 13, 17, 19, 31.
Density in primes
Cutoff ![]() |
Number of primes ![]() |
Number of Sophie Germain primes ![]() |
Proportion of primes that are Sophie Germain primes | Number of Sophie Germain primes divided by ![]() |
---|---|---|---|---|
10 | 4 | 3 | ![]() |
![]() |
100 | 25 | 10 | ![]() |
![]() |
1000 | 168 | 37 | ![]() |
![]() |
Infinitude conjecture
Further information: Infinitude conjecture for Sophie Germain primes
It is conjectured that there are infinitely many Sophie Germain primes (or equivalently, that there are infinitely many safe primes). It is also conjectured that the number of Sophie Germain primes less than or equal to is
, in other words, there exist constants
such that the following holds for all sufficiently large
:
.
where denotes the number of Sophie Germain primes less than or equal to
.
Other related conjectures to the existence of Sophie Germain primes are:
- Conjecture on existence of Cunningham chains of the first kind of arbitrary length
- Conjecture on existence of bitwin chains of arbitrary length
Infinitude of complement
Most primes are not Sophie Germain primes. It is rather easy to see that the number of primes that are not Sophie Germain primes is infinite: for instance, there are infinitely many primes that are modulo
, and none of them can be a Sophie Germain prime.
Facts
While there are not too many interesting facts about the structure of Sophie Germain primes per se, the structure of the corresponding safe primes is very interesting:
- Quadratic nonresidue that is not minus one is primitive root for safe prime
- Safe prime has plus or minus two as primitive root
Testing
The ID of the sequence in the Online Encyclopedia of Integer Sequences is A005384